Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35744822

ABSTRACT

Eucommia ulmoides Oliver (E. ulmoides) is a popular medicinal herb and health supplement in China, Japan, and Korea, and has a variety of pharmaceutical properties. The neuroendocrine-immune (NEI) network is crucial in maintaining homeostasis and physical or psychological functions at a holistic level, consistent with the regulatory theory of natural medicine. This review aims to systematically summarize the chemical compositions, biological roles, and pharmacological properties of E. ulmoides to build a bridge between it and NEI-associated diseases and to provide a perspective for the development of its new clinical applications. After a review of the literature, we found that E. ulmoides has effects on NEI-related diseases including cancer, neurodegenerative disease, hyperlipidemia, osteoporosis, insomnia, hypertension, diabetes mellitus, and obesity. However, clinical studies on E. ulmoides were scarce. In addition, E. ulmoides derivatives are diverse in China, and they are mainly used to enhance immunity, improve hepatic damage, strengthen bones, and lower blood pressure. Through network pharmacological analysis, we uncovered the possibility that E. ulmoides is involved in functional interactions with cancer development, insulin resistance, NAFLD, and various inflammatory pathways associated with NEI diseases. Overall, this review suggests that E. ulmoides has a wide range of applications for NEI-related diseases and provides a direction for its future research and development.


Subject(s)
Eucommiaceae , Hypertension , Neurodegenerative Diseases , China , Dietary Supplements , Eucommiaceae/chemistry , Humans
2.
ACS Appl Mater Interfaces ; 14(2): 2650-2662, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34995459

ABSTRACT

Smart nanotheranostic systems (SNSs) have attracted extensive attention in antitumor therapy. Nevertheless, constructing SNSs with disease diagnosis ability, improved drug delivery efficiency, inherent imaging performance, and high treatment efficiency remains a scientific challenge. Herein, ultrasmall tin dioxide (SnO2) was assembled with upconversion nanoparticles (UCNPs) to form mesoporous nanocapsules by an in situ hydrothermal deposition method, followed by loading with doxorubicin (DOX) and modification with bovine serum albumin (BSA). pH/near-infrared dual-responsive nanotheranostics was constructed for computed tomography (CT) and magnetic resonance (MR) imaging-induced collaborative cancer treatment. The mesoporous channel of SnO2 was utilized as a reservoir to encapsulate DOX, an antineoplastic drug, for chemotherapy and as a semiconductor photosensitizer for photodynamic therapy (PDT). Furthermore, the DOX-loaded UCNPs@SnO2-BSA nanocapsules combined PDT, Nd3+-doped UCNP-triggered hyperthermia effect, and DOX-triggered chemotherapy simultaneously and demonstrated prominently enhanced treatment efficiency compared to the monotherapy model. Moreover, tin, as one of the trace elements in the human body, has a similar X-ray attenuation coefficient to iodine and therefore can act as a contrast agent for CT imaging to monitor the treatment process. Such an orchestrated synergistic anticancer treatment exhibited apparent inhibition of tumor growth in tumor-bearing mice with negligible side effects. Our study demonstrates nanocapsules with excellent biocompatibility and great potential for cancer treatment.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Biocompatible Materials/pharmacology , Doxorubicin/pharmacology , Nanocapsules/chemistry , Photosensitizing Agents/pharmacology , Theranostic Nanomedicine , Tin Compounds/pharmacology , Animals , Antibiotics, Antineoplastic/chemistry , Biocompatible Materials/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Doxorubicin/chemistry , Drug Screening Assays, Antitumor , Female , Humans , Hydrogen-Ion Concentration , Infrared Rays , Materials Testing , Mice , Mice, Inbred Strains , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Particle Size , Photosensitizing Agents/chemistry , Porosity , Serum Albumin, Bovine/chemistry , Surface Properties , Tin Compounds/chemistry
3.
ACS Nano ; 14(8): 9613-9625, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32806021

ABSTRACT

Reactive oxygen species (ROS)-based therapeutic modalities including chemodynamic therapy (CDT) and photodynamic therapy (PDT) hold great promise for conquering malignant tumors. However, these two methods tend to be restricted by the overexpressed glutathione (GSH) and hypoxia in the tumor microenvironment (TME). Here, we develop biodegradable copper/manganese silicate nanosphere (CMSN)-coated lanthanide-doped nanoparticles (LDNPs) for trimodal imaging-guided CDT/PDT synergistic therapy. The tridoped Yb3+/Er3+/Tm3+ in the ultrasmall core and the optimal Yb3+/Ce3+ doping in the shell enable the ultrabright dual-mode upconversion (UC) and downconversion (DC) emissions of LDNPs under near-infrared (NIR) laser excitation. The luminescence in the second near-infrared (NIR-II, 1000-1700 nm) window offers deep-tissue penetration, high spatial resolution, and reduced autofluorescence when used for optical imaging. Significantly, the CMSNs are capable of relieving the hypoxic TME through decomposing H2O2 to produce O2, which can react with the sample to generate 1O2 upon excitation of UC photons (PDT). The GSH-triggered degradation of CMSNs results in the release of Fenton-like Mn2+ and Cu+ ions for •OH generation (CDT); simultaneously, the released Mn2+ ions couple with NIR-II luminescence imaging, computed tomography (CT) imaging, and magnetic resonance (MR) imaging of LDNPs, performing a TME-amplified trimodal effect. In such a nanomedicine, the TME modulation, bimetallic silicate photosensitizer, Fenton-like nanocatalyst, and NIR-II/MR/CT contrast agent were achieved "one for all", thereby realizing highly efficient tumor theranostics.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Hydrogen Peroxide , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Photosensitizing Agents/therapeutic use , Theranostic Nanomedicine , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...